

CMIP6 Data Citation Generator

	Basics

	[image: Python Versions] [https://pypi.org/project/CMIP6-json-data-citation-generator/]

	[image: License] [https://github.com/znicholls/CMIP6-json-data-citation-generator/blob/master/LICENSE]

	[image: Docs] [https://cmip6-json-data-citation-generator.readthedocs.io/en/latest/]

	Citations

	[image: Zenodo] [https://zenodo.org/badge/latestdoi/137273695]

	Repository health

	[image: Build Status] [https://travis-ci.com/znicholls/CMIP6-json-data-citation-generator]

	[image: Codecov] [https://codecov.io/gh/znicholls/CMIP6-json-data-citation-generator]

	[image: Codacy] [https://www.codacy.com/app/znicholls/CMIP6-json-data-citation-generator?utm_source=github.com&utm_medium=referral&utm_content=znicholls/CMIP6-json-data-citation-generator&utm_campaign=Badge_Grade]

	Latest releases

	[image: PyPI] [https://pypi.org/project/cmip6-data-citation-generator/]

	[image: Latest Version] [https://github.com/znicholls/CMIP6-json-data-citation-generator/releases]

	Latest activity

	[image: Contributors] [https://github.com/znicholls/CMIP6-json-data-citation-generator/graphs/contributors]

	[image: Last Commit] [https://github.com/znicholls/CMIP6-json-data-citation-generator/commits/master]

	[image: Commits Since Last Release] [https://github.com/znicholls/CMIP6-json-data-citation-generator/commits/master]

The CMIP6 Data Citation Generator is free software under a BSD 2-Clause License, see LICENSE.
If you make any use of the CMIP6 Data Citation Generator, please cite the relevant Zenodo release [https://zenodo.org/search?page=1&size=20&q=cmip6-data-citation-generator].

Documentation

	Installation

	Usage
	Generating json files

	Uploading json files

	Development
	Contributing

	Getting setup

	Formatting

	Buiding the docs

	Releasing

	Why is there a Makefile in a pure Python repository?

	Why did we choose a BSD 2-Clause License?

API reference

	cmip6_data_citation_generator API

	cmip6_data_citation_generator.utils API

	cmip6_data_citation_generator.io_dcg API

Versions

	Changelog
	master

	v0.3.1

	v0.3.0

	v0.2.0

	v0.1.2

	v0.1.1

	v0.1.0

Other Resources

The complete CMIP6 Data Citation User Guide can be found at https://cera-www.dkrz.de/docs/pdf/CMIP6_Citation_Userguide.pdf.
The last page in particular is very helpful.
It documents and explains a number of error messages which can arise when uploading.

Index

	Index

	Module Index

	Search Page

Installation

The CMIP6 Data Citation Generator can be installed with pip [https://pypi.org/project/pip/].

if you're using a virtual environment, make sure you're in it
pip install cmip6-data-citation-generator

Usage

Generating json files

Having cloned this repository, an example, marked up, yaml file is given in tests/test_data/valid_input.yaml. Assuming that your working directory is the root of this repository, json files can then be generated as shown below. Running this command will produce output in the path ./example-outputs along with output like the block below (note: any warning about Iris not being installed can be safely ignored).
Each example json file is based off the template file tests/test_data/valid_input.yaml but fills in the missing text with information taken from the filepath of each data file.

check current working directory
$ pwd
.../CMIP6-json-data-citation-generator
$ generate-cmip6-citation-files tests/test_data/input4MIPs_like tests/test_data/valid_input.yaml ./example-outputs --drs CMIP6input4MIPs --regexp ".*\.nc" --keep
./example-outputs does not exist, making it now

Writing citation file for input4MIPs.CMIP6.AerChemMIP.UoM.UoM-AIM-ssp370-lowNTCF-1-2-0 to ./example-outputs/input4MIPs.CMIP6.AerChemMIP.UoM.UoM-AIM-ssp370-lowNTCF-1-2-0.json
Writing citation file for input4MIPs.CMIP6.CMIP.UoM.UoM-CMIP-1-2-0 to ./example-outputs/input4MIPs.CMIP6.CMIP.UoM.UoM-CMIP-1-2-0.json
Writing citation file for input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-AIM-ssp370-1-2-0 to ./example-outputs/input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-AIM-ssp370-1-2-0.json
Writing citation file for input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-GCAM4-ssp434-1-2-0 to ./example-outputs/input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-GCAM4-ssp434-1-2-0.json
Writing citation file for input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-GCAM4-ssp460-1-2-0 to ./example-outputs/input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-GCAM4-ssp460-1-2-0.json
Writing citation file for input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-IMAGE-ssp119-1-2-0 to ./example-outputs/input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-IMAGE-ssp119-1-2-0.json
Writing citation file for input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-IMAGE-ssp126-1-2-0 to ./example-outputs/input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-IMAGE-ssp126-1-2-0.json
Writing citation file for input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-MESSAGE-GLOBIOM-ssp245-1-2-0 to ./example-outputs/input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-MESSAGE-GLOBIOM-ssp245-1-2-0.json
Writing citation file for input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-REMIND-MAGPIE-ssp534-over-1-2-0 to ./example-outputs/input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-REMIND-MAGPIE-ssp534-over-1-2-0.json
Writing citation file for input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-REMIND-MAGPIE-ssp585-1-2-0 to ./example-outputs/input4MIPs.CMIP6.ScenarioMIP.UoM.UoM-REMIND-MAGPIE-ssp585-1-2-0.json

Further help can be accessed with

$ generate-cmip6-citation-files -h

Uploading json files

json files can be upload to the CMIP6 data citation server using the command line.

To make this run, two vital steps must be taken:

	Produce valid json files to upload (see Generating json files)

	Meet the preconditions specified in Section 2.1 of the CMIP6 Citation Userguide [https://cera-www.dkrz.de/docs/pdf/CMIP6_Citation_Userguide.pdf]

When installed, the upload client can be run with

$ upload-cmip6-citation-files input

where input is either a single file or a folder of files to upload. Further help can be accessed with

$ upload-cmip6-citation-files -h

Development

If you’re interested in contributing to the CMIP6 Data Citation Generator, we’d love to have you on board!
This section of the docs details how to get setup to contribute and how best to communicate.

	Contributing

	Getting setup

	Getting help

	Development tools

	Other tools

	Formatting

	Buiding the docs

	Gotchas

	Docstring style

	Releasing

	PyPI

	Last steps

	Why is there a Makefile in a pure Python repository?

	Why did we choose a BSD 2-Clause License?

Contributing

All contributions are welcome, some possible suggestions include:

	tutorials (or support questions which, once solved, result in a new tutorial :D)

	blog posts

	improving the documentation

	bug reports

	feature requests

	pull requests

Please report issues or discuss feature requests in the CMIP6 Data Citation Generator issue tracker [https://github.com/znicholls/CMIP6-json-data-citation-generator/issues].
If your issue is a feature request or a bug, please use the templates available, otherwise, simply open a normal issue :)

As a contributor, please follow a couple of conventions:

	Create issues in the CMIP6 Data Citation Generator issue tracker [https://github.com/znicholls/CMIP6-json-data-citation-generator/issues] for changes and enhancements, this ensures that everyone in the community has a chance to comment

	Be welcoming to newcomers and encourage diverse new contributors from all backgrounds: see the Python Community Code of Conduct [https://www.python.org/psf/codeofconduct/]

Getting setup

To get setup as a developer, we recommend the following steps (if any of these tools are unfamiliar, please see the resources we recommend in Development tools):

	Install make

	Run make venv, if that fails the commands are

	Create a Python virtual environment, python3 -m venv venv

	Activate your virtual environment, source venv/bin/activate (on bash, other shells may be different)

	Upgrade pip pip install --upgrade pip

	Install an editable version of the CMIP6 Data Citation Generator along with development dependencies, pip install -e .[test,docs,deploy]

	Make sure the tests pass by running make test, if that files the commands are

	Run the unit and integration tests ./venv/bin/pytest --cov -rfsxEX --cov-report term-missing

Getting help

Whilst developing, unexpected things can go wrong (that’s why it’s called ‘developing’, if we knew what we were doing, it would already be ‘developed’).
Normally, the fastest way to solve an issue is to contact us via the issue tracker [https://github.com/znicholls/CMIP6-json-data-citation-generator/issues].
The other option is to debug yourself.
For this purpose, we provide a list of the tools we use during our development as starting points for your search to find what has gone wrong.

Development tools

This list of development tools is what we rely on to develop the CMIP6 Data Citation Generator reliably and reproducibly.
It gives you a few starting points in case things do go inexplicably wrong and you want to work out why.
We include links with each of these tools to starting points that we think are useful, in case you want to learn more.

	Git [http://swcarpentry.github.io/git-novice/]

	Make [https://swcarpentry.github.io/make-novice/]

	
	Tests [https://semaphoreci.com/community/tutorials/testing-python-applications-with-pytest]

	
	we use a blend of pytest [https://docs.pytest.org/en/latest/] and the inbuilt Python testing capabilities for our tests so checkout what we’ve already done in tests to get a feel for how it works

	
	Continuous integration (CI) [https://docs.travis-ci.com/user/for-beginners/]

	
	we use Travis CI [https://travis-ci.com/] for our CI but there are a number of good providers

	Sphinx [http://www.sphinx-doc.org/en/master/]

Other tools

We also use some other tools which aren’t necessarily the most familiar.
Here we provide a list of these along with useful resources.

	
	Regular expressions [https://www.oreilly.com/ideas/an-introduction-to-regular-expressions]

	
	we use regex101.com to help us write and check our regular expressions, make sure the language is set to Python to make your life easy!

Formatting

To help us focus on what the code does, not how it looks, we use a couple of automatic formatting tools.
These automatically format the code for us and tell use where the errors are.
To use them, after setting yourself up (see Getting setup), simply run make black and make flake8.
Note that make black can only be run if you have committed all your work i.e. your working directory is ‘clean’.
This restriction is made to ensure that you don’t format code without being able to undo it, just in case something goes wrong.

Buiding the docs

After setting yourself up (see Getting setup), building the docs is as simple as running make docs (note, run make -B docs to force the docs to rebuild and ignore make when it says ‘… index.html is up to date’).
This will build the docs for you.
You can preview them by opening docs/_build/html/index.html in a browser.

For documentation we use Sphinx [http://www.sphinx-doc.org/en/master/].
To get ourselves started with Sphinx, we started with this example [https://pythonhosted.org/an_example_pypi_project/sphinx.html] then used Sphinx’s getting started guide [http://www.sphinx-doc.org/en/master/usage/quickstart.html].

Gotchas

To get Sphinx to generate pdfs (rarely worth the hassle as they’re automatically built on Read the Docs anyway), you require Latexmk [https://mg.readthedocs.io/latexmk.html].
On a Mac this can be installed with sudo tlmgr install latexmk.
You will most likely also need to install some other packages (if you don’t have the full distribution).
You can check which package contains any missing files with tlmgr search --global --file [filename].
You can then install the packages with sudo tlmgr install [package].

Docstring style

For our docstrings we use numpy style docstrings.
For more information on these, here is the full guide [https://numpydoc.readthedocs.io/en/latest/format.html] and the quick reference we also use [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html].

Releasing

The steps to release a new version of the CMIP6 Data Citation Generator are shown below.
Please do all the steps below and all the steps for both release platforms.

	Test installation with dependencies make test-install

	Update CHANGELOG.rst:

	add a header for the new version between master and the latest bullet point

	this should leave the section underneath the master header empty

	git add .

	git commit -m "Prepare for release of vX.Y.Z"

	git push

	git tag vX.Y.Z

	git push --tags

PyPI

	make publish-on-testpypi

	Go to test PyPI [https://test.pypi.org/project/cmip6-data-citation-generator/] and check that the new release is as intended. If it isn’t, stop and debug.

	Test the install with make test-testpypi-install (this doesn’t test all the imports as most required packages are not on test PyPI).

	make publish-on-pypi

	Go to the CMIP6 Data Citation Generator’s PyPI [https://pypi.org/project/cmip6-data-citation-generator/] and check that the new release is as intended.

	Test the install with make test-pypi-install (a pip only install will throw warnings about Iris not being installed, that’s fine).

Last steps

	If you want to archive this version, follow the instructions here [https://help.github.com/articles/creating-releases/]

	Update any badges in README.rst that don’t update automatically (note that the commits since badge only updates if you archive the version)

	git add .

	git commit -m "Update README badges"

	git push

Why is there a Makefile in a pure Python repository?

Whilst it may not be standard practice, a Makefile is a simple way to automate general setup (environment setup in particular).
Hence we have one here which basically acts as a notes file for how to do all those little jobs which we often forget e.g. setting up environments, running tests (and making sure we’re in the right environment), building docs, setting up auxillary bits and pieces.

Why did we choose a BSD 2-Clause License?

We want to ensure that our code can be used and shared as easily as possible.
Whilst we love transparency, we didn’t want to force all future users to also comply with a stronger license such as AGPL.
Hence the choice we made.

We recommend Morin et al. 2012 [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002598] for more information for scientists about open-source software licenses.

cmip6_data_citation_generator API

	
cmip6_data_citation_generator.generate_jsons(input_dir, template_yaml, drs, output_dir, regexp='.*', keep=True)

	Generate CMIP6 data citation json files

	Parameters

	
	input_dir (str) – Directory to search for files.

	template_yaml (str) – Path to yaml file to use as a template for generating the json file.

	drs (str) – The data reference syntax used to save your data. Must be one of
[“CMIP6input4MIPs”, “CMIP6output”].

	output_dir (str) – The path in which to save the generated files.

	regexp (str) – Regular expression to use to filter the filepaths found in input_dir.

	keep (bool) – If True, generate jsons for the files in filepaths which match regexp. If
False, do the opposite i.e. generate jsons for the files in filepaths which
don’t match regexp.

cmip6_data_citation_generator.utils API

	
cmip6_data_citation_generator.utils.deep_substitute(input_val, substitutions)

	Substitute strings in the input recursively

In the input, strings contained between carets e.g. ‘<name>’, will be replaced
with the corresponding value in substitutions. Before looking for a
replacement, the carets are removed. For example, ‘<name>’ will be replaced with
substitutions["name"].

Note that keys in any input value which is a dictionary will not be replaced, see
the examples.

	Parameters

	
	input_val (str, float, int, list, dict, nested structures of the above) – The object in which the substitutions should be made

	substitutions (dict) – The substitutions to make

	Returns

	The input_val with all substitutions made

	Return type

	type(input_val)

	Raises

	KeyError – If no substitution can be found

Examples

>>> deep_substitute("<source_id>", {"source_id": "UoM"})
'UoM'

>>> deep_substitute(["<source_id>", "other string"], {"source_id": "UoM"})
['UoM', 'other string']

>>> deep_substitute([["<source_id>", "other string"], "<activity_id>"], {"source_id": "UoM", "activity_id": "21st Century runs"})
[['UoM', 'other string'], '21st Century runs']

>>> deep_substitute([{"other string": "<source_id>"}, "<activity_id>"], {"source_id": "UoM", "activity_id": "21st Century runs"})
[{'other string': 'UoM'}, '21st Century runs']

>>> # keys in input dictionaries are not substituted
>>> deep_substitute({"<source_id>": "<source_id>"}, {"source_id": "UoM"})
{'<source_id>': 'UoM'}

>>> # missing substitutions will raise ``KeyError``
>>> deep_substitute("<source_id>", {"activity_id": "21st Century runs"})
KeyError: "No substitution provided for ['<source_id>']"

cmip6_data_citation_generator.io_dcg API

	
cmip6_data_citation_generator.io_dcg.load_and_validate_yaml(yaml_to_read, schema=<class 'cmip6_data_citation_generator.validators.CitationSchema'>)

	Load yaml from file and validate using schema

	Parameters

	
	yaml_to_read (str) – File to read the yaml from

	schema (marshmallow.Schema) – Schema to use to validate the loaded yaml

	Returns

	Loaded dictionary which has been validated by schema

	Return type

	dict

	
cmip6_data_citation_generator.io_dcg.validate_and_return_raw_dict(raw_dict, schema=<class 'cmip6_data_citation_generator.validators.CitationSchema'>)

	Return dictionary validated using the CitationSchema

	Parameters

	
	raw_dict (dict) – Raw dictionary to load

	schema (marshmallow.Schema) – Schema to use to validate the dictionary

	Returns

	Loaded dictionary which has been validated by schema

	Return type

	dict

	
cmip6_data_citation_generator.io_dcg.write_json(json_dict, path)

	Write json file from input dictionary to path

	Parameters

	
	json_dict (dict) – Dictionary containing the json to write

	path (str) – Path to write to

Changelog

master

v0.3.1

	Nothing new, just updating to get history and Zenodo citation right

v0.3.0

	(#25 [https://github.com/znicholls/CMIP6-json-data-citation-generator/pull/25]) Add command line interface for generation as well as uploading code

v0.2.0

	(#23 [https://github.com/znicholls/CMIP6-json-data-citation-generator/pull/23]) Fix code coverage, automatically add subject and improve example yaml

	(#22 [https://github.com/znicholls/CMIP6-json-data-citation-generator/pull/22]) Added test of special character support

v0.1.2

	Nothing new, just updating to get Zenodo citation right

v0.1.1

	Fix Python version id for PyPI

v0.1.0

	(#18 [https://github.com/znicholls/CMIP6-json-data-citation-generator/pull/18]) Added basic citation generator setup

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cmip6_data_citation_generator	

 	
 	
 cmip6_data_citation_generator.io_dcg	

 	
 	
 cmip6_data_citation_generator.utils	

Index

 C
 | D
 | G
 | L
 | V
 | W

C

 	
 	cmip6_data_citation_generator (module)

 	
 	cmip6_data_citation_generator.io_dcg (module)

 	cmip6_data_citation_generator.utils (module)

D

 	
 	deep_substitute() (in module cmip6_data_citation_generator.utils)

G

 	
 	generate_jsons() (in module cmip6_data_citation_generator)

L

 	
 	load_and_validate_yaml() (in module cmip6_data_citation_generator.io_dcg)

V

 	
 	validate_and_return_raw_dict() (in module cmip6_data_citation_generator.io_dcg)

W

 	
 	write_json() (in module cmip6_data_citation_generator.io_dcg)

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 CMIP6 Data Citation Generator

 		
 Installation

 		
 Usage

 		
 Generating json files

 		
 Uploading json files

 		
 Development

 		
 Contributing

 		
 Getting setup

 		
 Getting help

 		
 Formatting

 		
 Buiding the docs

 		
 Gotchas

 		
 Docstring style

 		
 Releasing

 		
 PyPI

 		
 Last steps

 		
 Why is there a Makefile in a pure Python repository?

 		
 Why did we choose a BSD 2-Clause License?

 		
 cmip6_data_citation_generator API

 		
 cmip6_data_citation_generator.utils API

 		
 cmip6_data_citation_generator.io_dcg API

 		
 Changelog

 		
 master

 		
 v0.3.1

 		
 v0.3.0

 		
 v0.2.0

 		
 v0.1.2

 		
 v0.1.1

 		
 v0.1.0

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

